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Rayleigh's problem is the problem of the flow of a gas near an in- 
finite plate set impulsively in motion in its own plane with a velocity 
U. This problem is of considerable interest in connection with the study 
of the initial stage of arbitrary gas-dynamic motions, as well as in 
connection with many processes occuring in non-steady gas flows [1]. 
The theoretical results which are available are valid for the range 
t/At >> 1 (At is the mean free time between molecular collisions and 
t is the time from the beginning of the motion), in which the momen- 
tum transfer in the bulk of the gas can be described in hydrodynamic 
terms [2]. But no less important is the initiM Stage of the motion, when 
t/At << 1 and only the collisions between the molecules and the plate 
are significant; this stage has been analyzed in considerable detail in 
[1]. According to [1], the collision integral in Boltzmann's equation can 
be neglected, i .e.  it suffices to consider the eqfiation 
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where z is the coordinate normal to the plate. 
introducing the momentum exchange coefficient q, defined as the 

fraction of molecules diffusely reflected from the plate, and restricting 
our treatment, for simplicity, to the case of low M and equal gas and 
plate temperature, we can write the boundary condition for the distribu- 
tion function in the form [1] 
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where p, T are the density and temperature of the gas, R is the gas con- 
Rant,  and ]0(c) is the Maxwellian distribution. The initial condition is 

/ (0, =, ~) = I0 (c). (3) 

Usually one assumes that U in (2) is a constant. This assumption, 
which is justified for the gas-dynamic range t/At >> 1. is completely 
arbitrary for the initial stage t/At << 1. In fact, in a real process one 
can impose only the force which accelerates the plate. The speed of 
the plate is a function of time, and, in particular, the time required 
to accelerate the plate to the constant speed can be of the order of At. 
In that case the results of [1], based on the a~sumption that U is con- 
stant, lose their validity. 

Therefore we assume that the force oct) acting on unit area of the 
plate in the x direction is given, and the initial speed is 

U (0) = 0. (4) 

To determine U(t) we use an equation which follows directly from 
Newton's second law. The momentum of the whole system per unit 
area of the plate is 
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where v(t, z) is the mass velocity of me gas, and y is the mass of the 
plate per unit area. The factor 2 in front of the integral is introduced 
to take into account the motion of the gas on both sides of the p la te -  

for z > 0 and for z < 0. Clearly, 

P (t) = i z (~) d~. 
(6) 

Equations (1) and (6), together with the conditions (2), (4), define 

the problem. 

Taking the Laplace transform of (1) and taking into account (2) 
and (3), we obtain the transformed solution f*(p, z, c) 

r =to(~)]y + 
U) 

1, x > O  
y ( x ) =  O , x < O ,  

where y(x) is the Heaviside unit step function. The distribution function 
is then 

/(t,z,c)=]o(c)-t-_ tIT qcx U(t--~)y\tZ \ ( --~-z)y(c:). (8) 

The transformed equation (6) is 
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Substituting f* from (7) into this equation and interchanging the 
order of integration with respect to z and c z, we obtain 

U~ ~ +  = ~ p - - .  

Assuming o(t) = ~, o~ = o/p, we obtain 

U (t) = Uo [1 -- exp (-- t / x)], (9) 
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Now we can easily calculate the moments which characterize the flow. 
The velocity,, for example, is 
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In particular, the velocity of the gas at the plate is 

Z 

A simple calculation yields the shear stress 

Pxz=qpUo V ~ { e x p [ - -  ( + ) 2 3  - 

co  

r , / t  

The introduction of the finite acceleration of the plate from 0 to 
U yields the physically reasonable result that Pxz tends to 0 when t /  
/r --. O. 

Analogous results hold for the other non-zero moments of f(t, z, c ) -  
corrections to the static temperature of the gas, tangential and normaI 
heat flux, etc, Analytic expressions for these variables can be easily 
obtained by integration of (8). These results reduce to the results for 
U = Us [1] for t~" -~ ,o. The characteristic time of approach of these 
variables to their asymptotic values is r. 

The above results can easily be extended to the case when the 
temperatures of the gas and the plate are not equal. The difference 
between the two cases lies in the coefficients of the boundary condi- 
tion (2), and leads to a minor ohange in the final exlxesstom for U(t), 
f(t, z. c). etc. For t / r  -~ .0 these variables also reduce to those of [1]. 
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The solution of Rayleigh's problem for t/At >> I has contributed 
to the understanding of the behavior of the incompressible boundary 
layer far from the leading edge [1]. In an analogous way, the present 
solution corresponds m the boundary layer near the leading edge (in the 
region x << X/c,, where c ,  is the mean thermal speed of  the molecules). 
This range can become significant in the case of motion in a rarefied 
gas. 
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